
Manual

F100-H636.101 K0,5RW2

Husillo de alta frecuencia

Cambio hidráulico del cono

Identificación del husillo de alta frecuencia

Puesto que nuestros husillos de alta frecuencia se desarrollan siempre con la tecnología más reciente, nos reservamos el derecho a introducir modificaciones o divergencias técnicas respecto a la variante descrita en el manual de instrucciones.

Los textos de este manual han sido redactados minuciosamente. Sin embargo, la empresa **Nakanishi Jaeger GmbH** no asume ninguna responsabilidad jurídica ni de otro tipo por los datos que eventualmente sean incorrectos y sus consecuencias.

La traducción o reproducción, incluso parcial, no está permitida sin autorización expresa por escrito de la empresa **Nakanishi Jaeger GmbH**.

Índice:

Traducción del manual de instrucciones original

1	Información previa5		
1.1	Propósito de este manual		
1.2	Explicación de los símbolos		
2	Transporte y embalaje		
2.1	Volumen de suministro del husillo de alta frecuencia		
	2.1.1 Kit de mantenimiento 6		
	2.1.2 Accesorios opcionales 6		
	2.1.3 Documentación suministrada 6		
2.2	Embalaje del husillo de alta frecuencia 7		
3	Uso previsto7		
3.1	Tipos de mecanizado permitidos 7		
3.2	Materiales permitidos 7		
4	Indicaciones de seguridad8		
4.1	Trabajar de modo seguro9		
4.2	Detener el husillo de alta frecuencia 10		
4.3	Paso giratorio 10		
4.4	Instalación y mantenimiento 11		
4.5	Modificación y reparación11		
4.6	Modos de funcionamiento no permitidos 11		
5	Descripción técnica12		
5 5.1	Descripción técnica12Conexiones del husillo de alta frecuencia12		
_			
5.1	Conexiones del husillo de alta frecuencia 12		
5.1 5.2	Conexiones del husillo de alta frecuencia		
5.15.25.3	Conexiones del husillo de alta frecuencia		
5.1 5.2 5.3 5.4	Conexiones del husillo de alta frecuencia 12 Conexión eléctrica 13 Refrigeración 13 Aire de sellado 13		
5.1 5.2 5.3 5.4 5.5	Conexiones del husillo de alta frecuencia		
5.1 5.2 5.3 5.4 5.5 5.6	Conexiones del husillo de alta frecuencia		
5.1 5.2 5.3 5.4 5.5 5.6	Conexiones del husillo de alta frecuencia 12 Conexión eléctrica 13 Refrigeración 13 Aire de sellado 13 Limpieza del cono 13 Cambio de herramienta hidráulico 13 Paso giratorio/alimentación interna de refrigerante 14 5.7.1 Lubricante refrigerador 14		
5.1 5.2 5.3 5.4 5.5 5.6	Conexiones del husillo de alta frecuencia 12 Conexión eléctrica 13 Refrigeración 13 Aire de sellado 13 Limpieza del cono 13 Cambio de herramienta hidráulico 13 Paso giratorio/alimentación interna de refrigerante 14 5.7.1 Lubricante refrigerador 14 5.7.2 Filtrar el lubricante refrigerador 15		
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Conexiones del husillo de alta frecuencia 12 Conexión eléctrica 13 Refrigeración 13 Aire de sellado 13 Limpieza del cono 13 Cambio de herramienta hidráulico 13 Paso giratorio/alimentación interna de refrigerante 14 5.7.1 Lubricante refrigerador 14 5.7.2 Filtrar el lubricante refrigerador 15 5.7.3 Evitar picos de presión 15		
5.1 5.2 5.3 5.4 5.5 5.6	Conexiones del husillo de alta frecuencia 12 Conexión eléctrica 13 Refrigeración 13 Aire de sellado 13 Limpieza del cono 13 Cambio de herramienta hidráulico 13 Paso giratorio/alimentación interna de refrigerante 14 5.7.1 Lubricante refrigerador 14 5.7.2 Filtrar el lubricante refrigerador 15 5.7.3 Evitar picos de presión 15 Fuga 16		
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Conexiones del husillo de alta frecuencia 12 Conexión eléctrica 13 Refrigeración 13 Aire de sellado 13 Limpieza del cono 13 Cambio de herramienta hidráulico 13 Paso giratorio/alimentación interna de refrigerante 14 5.7.1 Lubricante refrigerador 14 5.7.2 Filtrar el lubricante refrigerador 15 5.7.3 Evitar picos de presión 15 Fuga 16 5.8.1 Paso giratorio, montaje vertical 16		
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Conexiones del husillo de alta frecuencia 12 Conexión eléctrica 13 Refrigeración 13 Aire de sellado 13 Limpieza del cono 13 Cambio de herramienta hidráulico 13 Paso giratorio/alimentación interna de refrigerante 14 5.7.1 Lubricante refrigerador 14 5.7.2 Filtrar el lubricante refrigerador 15 5.7.3 Evitar picos de presión 15 Fuga 16 5.8.1 Paso giratorio, montaje vertical 16 5.8.2 Paso giratorio, montaje horizontal 17		
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Conexiones del husillo de alta frecuencia 12 Conexión eléctrica 13 Refrigeración 13 Aire de sellado 13 Limpieza del cono 13 Cambio de herramienta hidráulico 13 Paso giratorio/alimentación interna de refrigerante 14 5.7.1 Lubricante refrigerador 14 5.7.2 Filtrar el lubricante refrigerador 15 5.7.3 Evitar picos de presión 15 Fuga 16 5.8.1 Paso giratorio, montaje vertical 16 5.8.2 Paso giratorio, montaje horizontal 17 Datos técnicos 18		
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Conexiones del husillo de alta frecuencia 12 Conexión eléctrica 13 Refrigeración 13 Aire de sellado 13 Limpieza del cono 13 Cambio de herramienta hidráulico 13 Paso giratorio/alimentación interna de refrigerante 14 5.7.1 Lubricante refrigerador 14 5.7.2 Filtrar el lubricante refrigerador 15 5.7.3 Evitar picos de presión 15 Fuga 16 5.8.1 Paso giratorio, montaje vertical 16 5.8.2 Paso giratorio, montaje horizontal 17 Datos técnicos 18 Dimensiones 19		
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Conexiones del husillo de alta frecuencia 12 Conexión eléctrica 13 Refrigeración 13 Aire de sellado 13 Limpieza del cono 13 Cambio de herramienta hidráulico 13 Paso giratorio/alimentación interna de refrigerante 14 5.7.1 Lubricante refrigerador 14 5.7.2 Filtrar el lubricante refrigerador 15 5.7.3 Evitar picos de presión 15 Fuga 16 5.8.1 Paso giratorio, montaje vertical 16 5.8.2 Paso giratorio, montaje horizontal 17 Datos técnicos 18 Dimensiones 19 Datos del motor 20		
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Conexiones del husillo de alta frecuencia 12 Conexión eléctrica 13 Refrigeración 13 Aire de sellado 13 Limpieza del cono 13 Cambio de herramienta hidráulico 13 Paso giratorio/alimentación interna de refrigerante 14 5.7.1 Lubricante refrigerador 14 5.7.2 Filtrar el lubricante refrigerador 15 5.7.3 Evitar picos de presión 15 Fuga 16 5.8.1 Paso giratorio, montaje vertical 16 5.8.2 Paso giratorio, montaje horizontal 17 Datos técnicos 18 Dimensiones 19		

6.3	Esquema de conexiones				
6.4	Protección del motor Pt10002				
6.5	Protección del motor PTC 130 °C				
6.6	Supervisión del cono de la herramienta				
6.7	Emisiones de ruido aéreo				
7	Lugar de funcionamiento				
8	Instalación	30			
8.1	Instalar el husillo de alta frecuencia	30			
8.2	Diámetro del tubo de alimentación del medio	31			
8.3	Agua refrigerante	31			
	8.3.1 Calidad del agua refrigerante	31			
	8.3.2 Ajustar la refrigeración	32			
8.4	Cambio de herramienta hidráulico				
8.5	Aire comprimido	32			
	8.5.1 Clases de pureza de aire (ISO 8573 -1)	32			
	8.5.2 Ajustar el aire de sellado	33			
	8.5.3 Valor de ajuste	33			
9	Puesta en funcionamiento	34			
9.1	Esquema de rodaje	34			
9.2	Arranque diario	35			
9.3	Mensaje de parada	35			
9.4	Puesta en funcionamiento tras almacenamiento	35			
10	Cambio de herramienta	36			
10.1	Marcha a derecha y a izquierda	36			
10.2	Cambio hidráulico del cono	37			
	10.2.1 Tensor automático de herramienta HSK	37			
10.3	Diagrama de flujo	38			
	10.3.1 Diagrama de flujo hidráulico	38			
	10.3.2 Diagrama de flujo eléctrico	39			
	10.3.3 Señales	39			
11	Herramientas para el mecanizado de alta velo dad	ci- 40			
12	Mantenimiento	41			
12.1	Rodamientos de bolas	41			
12.2	Limpieza diaria	41			
	12.2.1 Antes de empezar a trabajar	41			
	12.2.2 En cada cambio de herramienta	42			
	12.2.3 En cada cambio del dispositivo de sujeción				
		12			

Índice:

Traducción del manual de instrucciones original

15	Declaración de incorporación	48
14.2	Fallos de funcionamiento	45
14.1	Red de servicio posventa	43
14	Servicio posventa y reparaciones	43
13.1	Eliminación de desechos y protección del medio ambiente	43
13	Desmontaje	43
12.6	Tiempo máximo de almacenamiento	42
12.5	Almacenamiento prolongado	42
12.4	Mantenimiento mensual	42
12.3	Almacenamiento	42

1 Información previa

El husillo de alta frecuencia es una valiosa herramienta de precisión para el mecanizado de alta velocidad.

1.1 Propósito de este manual

El presente manual es un componente importante del husillo de alta frecuencia.

- Conservar este manual con cuidado.
- Poner el manual de instrucciones a disposición de todo el personal encargado del husillo de alta frecuencia.
- Leer toda la documentación suministrada.
- → Antes de ejecutar un trabajo, leer detenidamente el capítulo correspondiente a dicho trabajo en el manual de instrucciones.

1.2 Explicación de los símbolos

Para poder asignar la información rápidamente, en este manual se utilizan símbolos y marcas de texto como ayuda visual.

Las indicaciones se caracterizan por una palabra clave y un marco de color:

PELIGRO

¡Situación peligrosa!

Causa lesiones graves o incluso la muerte.

Medida para evitar el peligro.

ADVERTENCIA

¡Situación peligrosa!

Puede causar lesiones graves o incluso la muerte.

► Medida para evitar el peligro.

ATENCIÓN

¡Situación peligrosa!

Puede causar lesiones leves o medias.

► Medida para evitar el peligro.

Aviso

Puede causar daños materiales. Este símbolo no advierte de daños personales

Consejo

Un consejo indica información útil para el usuario.

2 Transporte y embalaje

Evitar sacudidas y golpes fuertes durante el transporte, puesto que pueden dañar los cojinetes del husillo de alta frecuencia.

- Cualquier daño reduce la precisión del husillo de alta frecuencia.
- Cualquier daño limita la vida útil del husillo de alta frecuencia.
- Cualquier daño reduce la vida útil del husillo de alta frecuencia.

2.1 Volumen de suministro del husillo de alta frecuencia

El volumen de suministro del husillo de alta frecuencia incluye los siguientes componentes:

- ☐ Husillo de alta frecuencia
- ☐ Kit de mantenimiento
- ☐ Embalaje de transporte
- ⇒ En el momento de su recepción, compruebe que la entrega del husillo de alta frecuencia esté completa.

2.1.1 Kit de mantenimiento

☐ Cono de limpieza de fieltro

2.1.2 Accesorios opcionales

Disponible previa demanda:

- ☐ Convertidor de frecuencia
- Refrigerador
- ☐ Grasa para pinzas
- Otros accesorios previa demanda.

Únicamente los accesorios autorizados han sido probados en cuanto a seguridad operacional y funcionamiento.

El uso de otros accesorios puede provocar la pérdida de todo derecho a indemnización y garantía.

2.1.3 Documentación suministrada

Los siguientes documentos se incluyen en el volumen de suministro del husillo de alta frecuencia:

- Manual de instrucciones
- ☐ La declaración de incorporación forma parte del manual de instrucciones.
- ☐ Protocolo de ensayo
- ⇒ En el momento de la entrega comprobar que la documentación suministrada está completa. Si es necesario, solicitar una nueva copia.

2.2 Embalaje del husillo de alta frecuencia

Todos los materiales del embalaje de transporte pueden ser reciclados en una instalación de eliminación de residuos.

3 Uso previsto

Conforme a la Directiva de Máquinas, el husillo de alta frecuencia es una «máquina incompleta» y no puede cumplir ninguna función por sí mismo. El husillo de alta frecuencia solo puede hacerse funcionar junto con una máquina herramienta y un convertidor de frecuencia.

3.1 Tipos de mecanizado permitidos

	El husillo de alta frecuencia ha sido desarrollado únicamente para los siguientes tipos de mecanizado.
	☐ Fresado
	☐ Taladrado
	☐ Grabado
	☐ Rectificado
	Si se requieren otros tipos de mecanizado, contactar con la empresa Naka- nishi Jaeger GmbH.
3.2	Materiales permitidos
	El husillo de alta frecuencia ha sido desarrollado para los siguientes materia- les.
	Metales (aleaciones, fundición, etc.)
	☐ Materiales sinterizados
	☐ Plásticos
	☐ Madera
	☐ Grafito
	☐ Piedra (mármol, etc.)
	Papel y cartón
	☐ Placas de circuito impreso
	☐ Vidrio y cerámica
	Si se requieren otros materiales, contactar con la empresa Nakanishi Jaeger GmbH.

4 Indicaciones de seguridad

El husillo de alta frecuencia ha sido construido conforme a las normas técnicas generalmente reconocidas y es seguro para el funcionamiento.

Sin embargo, el husillo de alta frecuencia puede conllevar riesgos cuando:

- ☐ El montaje lo realiza personal no cualificado.
- ☐ Se utiliza de modo inapropiado.
- ☐ Se utiliza para un uso no conforme a lo previsto.

El montaje, puesta en funcionamiento y mantenimiento del husillo de alta frecuencia deben ser realizados únicamente por personal especializado.

Definición: Se considera personal especializado a aquellas personas familiarizadas con la instalación, montaje, puesta en funcionamiento y operación del producto que disponen de las cualificaciones necesarias para desarrollar su actividad. La responsabilidad, formación y supervisión del personal deben estar reguladas con precisión por la empresa explotadora.

PELIGRO: A causa de explosión.

Los husillos de alta frecuencia no están autorizados para el uso en espacios con riesgo de explosión. El uso en tales espacios puede provocar explosiones.

No utilizar el husillo de alta frecuencia en entornos potencialmente explosivos.

PELIGRO: A causa de piezas proyectadas.

El husillo de alta frecuencia funciona con un elevado número de revoluciones y por ello puede ser proyectado.

Utilizar el husillo de alta frecuencia únicamente cuando esté montado de forma fija en la máquina o instalación.

Aviso: Respetar los valores límite.

▶ Observar los valores límite especificados en los datos técnicos.

Aviso: Tener en consideración la máquina.

- Observar el manual de instrucciones de la máquina en la que se ha montado el husillo de alta frecuencia.
- ► Tener en cuenta todas las indicaciones de seguridad del fabricante de las máquinas.
- Asegurarse de que la máquina no conlleve riesgos (p. ej. movimientos incontrolados). Solo después se debe instalar el husillo de alta frecuencia en la máquina.

Aviso: No dañar el husillo de alta frecuencia.

- Cualquier daño reduce la precisión del husillo de alta frecuencia.
- Cualquier daño limita la vida útil del husillo de alta frecuencia.
- Cualquier daño reduce la vida útil del husillo de alta frecuencia.

4.1 Trabajar de modo seguro

Observar todas las indicaciones de seguridad que figuran en el manual de instrucciones, las normas nacionales vigentes sobre prevención de accidentes, así como los reglamentos internos laborales, de explotación y de seguridad de la empresa.

PELIGRO: A causa de piezas proyectadas.

Si una herramienta no está sujeta correctamente será proyectada por la fuerza centrífuga generada durante el mecanizado.

- Utilizar completamente la profundidad del sistema de fijación.
- Sujetar la herramienta con fijación rígida.

PELIGRO: A causa de piezas proyectadas.

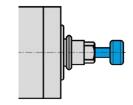
En caso de sentido de giro incorrecto el sistema de sujeción se afloja y la herramienta sale proyectada.

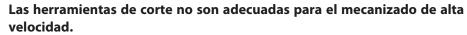
Respetar obligatoriamente el sentido de giro del husillo de alta frecuencia.

ADVERTENCIA: Peligro de lesiones a causa de piezas proyectadas.

El husillo de alta frecuencia funciona a elevados números de revoluciones que provocan la proyección de virutas con elevada energía cinética.

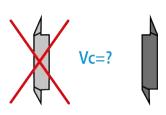
- ► En ningún caso deben retirarse los dispositivos de seguridad de la máquina o instalación.
- Trabajar siempre con gafas de protección.



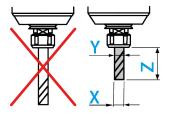

Figura de ejemplo: colocar el vástago

Aviso: Garantizar el funcionamiento.

No hacer funcionar nunca el husillo de alta frecuencia sin un vástago de herramienta fijado.


Si el vástago de herramienta no está fijado:

- ☐ El sistema de fijación se daña a causa de la fuerza centrífuga.
- ☐ El sistema de fijación se desajusta.
- ☐ Se influye en la calidad de equilibrado del husillo de alta frecuencia.
- Se daña el rodamiento.
- Tomar las medidas de protección contra salpicaduras adecuadas en función del tipo de mecanizado, el material que se debe mecanizar y la herramienta elegida.
 - Observar el manual de instrucciones de la máquina en la que se ha montado el husillo de alta frecuencia.
- Preguntar al proveedor de las herramientas las velocidades periféricas máximas de las herramientas utilizadas.



Si son necesarias por motivos de producción:

- Utilizar únicamente herramientas equilibradas.
 - **DIN ISO 1940**
 - Nivel de calidad 2,5

El diámetro de cuchilla de la herramienta (X) no debe ser mayor que el margen de sujeción máximo (Y).

- Sujetar la herramienta siempre con la menor distancia posible.
- Mantener baja la medida (Z).
 - (Y) Ver el capítulo: Datos técnicos [▶ 18].

4.2 Detener el husillo de alta frecuencia

Para poner fuera de servicio el husillo de alta frecuencia para trabajos de instalación y mantenimiento proceder de la siguiente manera:

- Desconectar la alimentación de energía (corriente) por completo.
- Desconectar la alimentación de medios (aire y líquido) por completo.
- Asegurarse de que el eje del husillo de alta frecuencia está detenido por completo.

Si el husillo se ha detenido para limpiarlo:

⇒ Volver a conectar solo el aire de sellado y de limpieza de cono.

Consejo: Transmitir los datos al control.

Utilizar en el convertidor de frecuencia la opción de detectar el mensaje de parada del eje y enviarlo al control de la máquina para su evaluación.

4.3 Paso giratorio

PELIGRO: A causa de explosión.

Los medios circulantes inflamables o hidrocarburos pueden inflamarse y causar explosiones.

- Asegurarse de que no se utilicen medios circulantes inflamables.
- Asegurarse de que no se utilicen hidrocarburos.

Excepción:

Aceites térmicos dentro del margen de temperatura permitido.

▶ Observar la hoja de datos de seguridad del aceite utilizado.

ADVERTENCIA: Peligro de lesiones a causa de piezas proyectadas.

Si se aplica una presión demasiado alta al paso giratorio pueden saltar las mangueras de conexión.

No conectar el paso giratorio a un sistema de tuberías con presión demasiado alta.

ADVERTENCIA: Peligro de quemaduras.

Si los medios circulantes exceden la temperatura máxima permitida pueden dañarse las juntas. Como consecuencia el paso giratorio deja de ser estanco y los medios calientes pueden salir.

No hacer circular medios circulantes demasiado calientes por el paso giratorio.

ATENCIÓN: Peligro de lesiones a causa de escapes del medio.

Al realizar trabajos en el paso giratorio, el medio puede entrar en contacto con la piel o con los ojos.

▶ Observar las indicaciones de seguridad del medio circulante utilizado.

ATENCIÓN: Peligro de lesiones a causa de escapes del medio.

Si se utilizan mangueras inadecuadas, éstas pueden volverse porosas o reventar.

- ► Elegir mangueras adecuadas para la conexión del paso giratorio a la máquina, cuyas especificaciones sean las correctas para el caso de aplicación.
- Utilizar mangueras autorizadas para el medio.
- Utilizar manqueras autorizadas para la presión máxima del sistema de la máquina.
- ▶ Utilizar mangueras autorizadas para la temperatura máxima del medio.

4.4 Instalación y mantenimiento

- Llevar a cabo los trabajos de instalación, limpieza y mantenimiento solo después de detener el husillo de alta frecuencia y de que se haya detenido el eje.
- Instalar todos los dispositivos de seguridad y protección de la máquina inmediatamente después de concluir los trabajos.

4.5 Modificación y reparación

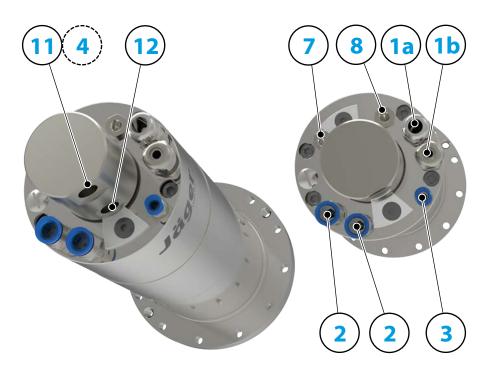
Las modificaciones o cambios de los husillos de alta frecuencia solo están permitidas tras acordarlo previamente con la empresa **Nakanishi Jaeger GmbH**.

Solo los socios de servicio técnico que figuran en el capítulo «Servicio posventa y reparaciones [> 43]» pueden abrir y reparar el husillo de alta frecuencia.

Únicamente los accesorios autorizados han sido probados en cuanto a seguridad operacional y funcionamiento.

4.6 Modos de funcionamiento no permitidos

El husillo de alta frecuencia solo es seguro para el funcionamiento cuando se utiliza conforme a lo previsto.


Observar las indicaciones de seguridad de todos los capítulos del manual de instrucciones, en caso contrario pueden provocarse riesgos para el personal, el medio ambiente, la máquina o el husillo de alta frecuencia.

La inobservancia de las indicaciones de seguridad puede conllevar la pérdida de todo derecho a indemnización y garantía.

5 Descripción técnica

5.1 Conexiones del husillo de alta frecuencia

1a	Conexión eléctrica para: Fases del motor	
1b	Conexión eléctrica para: Supervisión del cono de la herramienta, PTC, Pt1000	
2	Agua refrigerante	G 1/4"
3	Aire de sellado	G 1/8"
4	Limpieza del cono	G 1/4"
7	Sistema hidráulico para cambio de herramienta (cilindradelante)	M10x1
8	Sistema hidráulico para cambio de herramienta (cilindr retraído)	M10x1
11	Alimentación interna de refrigerante	G 1/4"
12	Fuga	G1/4" (3x120°)

5.2 Conexión eléctrica

El husillo de alta frecuencia solo debe hacerse funcionar con un convertidor de frecuencia (CF).

- Comprobar si los datos de corriente, tensión y frecuencia del husillo de alta frecuencia coinciden con los datos de salida del CF.
- Utilizar un cable de alimentación del motor lo más corto posible.
- ⇒ Ajustar el número de revoluciones del husillo de alta frecuencia con ayuda del CF.
- ⇒ Hallará más información en el manual de instrucciones del CF.

El CF detecta, según la variante, los siguientes estados de funcionamiento del husillo de alta frecuencia:

- ☐ El husillo de alta frecuencia gira.
- ☐ El husillo de alta frecuencia está demasiado caliente.
- ☐ El husillo de alta frecuencia está detenido, etc.

El CF transmite los estados de funcionamiento del husillo de alta frecuencia al control de la máquina.

5.3 Refrigeración

La refrigeración por líquido mantiene el husillo de alta frecuencia a temperatura constante durante el funcionamiento.

Aviso: Prolongación de la vida útil mediante disipación de calor.

Durante el funcionamiento del husillo de alta frecuencia se genera calor. La temperatura del husillo de alta frecuencia no debe exceder + 45° C, de lo contrario se reduce la vida útil de los cojinetes.

Comprobar la temperatura del husillo de alta frecuencia en la carcasa.

5.4 Aire de sellado

Para la especificación de la calidad del aire véase el capítulo «Clases de pureza de aire (ISO 8573 -1) [▶ 32]».

El aire de sellado evita que puedan penetrar objetos extraños como virutas y líquidos (p. ej. emulsiones) en el husillo de alta frecuencia.

 Comprobar que entre la carcasa y las piezas giratorias del husillo de alta frecuencia salga aire.

5.5 Limpieza del cono

Para la especificación de la calidad del aire véase el capítulo «Clases de pureza de aire (ISO 8573 -1) [> 32]».

La limpieza del cono evita que penetren virutas y líquidos en el eje durante el cambio de herramienta y ensucien y dañen el sistema de sujeción.

5.6 Cambio de herramienta hidráulico

El cambio de herramienta o del cono para herramienta se realiza de forma hidráulica.

En el interior del husillo de alta frecuencia se acciona una mecánica que tensa, destensa o expulsa el cono para herramienta o la pinza portapieza.

5.7 Paso giratorio/alimentación interna de refrigerante

La alimentación interna de refrigerante enfría la herramienta y el husillo de alta frecuencia.

El refrigerante de herramienta es conducido en el interior a través del husillo de alta frecuencia y de la herramienta y vuelve a salir por la superficie de corte de la herramienta fijada. Al mismo tiempo, el refrigerante lubrica la herramienta.

Aviso: Herramienta inadecuada.

Las herramientas sin orificio interior no son adecuadas para la alimentación interna de refrigerante.

Desconectar obligatoriamente la alimentación interna de refrigerante cuando se utilicen herramientas sin orificio interior por motivos de producción.

En caso de inobservancia el husillo de alta frecuencia se puede dañar o destruir.

- Utilizar únicamente herramientas y soportes de herramienta adecuados para la alimentación interna de refrigerante.
- Asegurarse de que el lubricante refrigerador cumple las normas legales vigentes y de las asociaciones profesionales.
- Asegurarse de que cuando el eje gira no se aplique aire comprimido al paso giratorio. De lo contrario pueden dañarse las superficies de obturación del paso giratorio.

5.7.1 Lubricante refrigerador

ATENCIÓN: Peligro a causa de salpicaduras de aceite hidráulico.

Si se utiliza el paso giratorio para aceite hidráulico, éste se dañará y el aceite hidráulico puede salpicar a gran presión.

- No utilizar aceites hidráulicos.
- Utilizar únicamente lubricantes refrigeradores que cumplan las siguientes especificaciones:

Aceite de corte	
Temperatura del medio	como mínimo +3 °C
Temperatura ambiente de funcionamiento	como mínimo +3 °C

5.7.2 Filtrar el lubricante refrigerador

Los medios circulantes no filtrados con un tamaño de partícula superior a 60 µm provocan un aumento del desgaste.

Colocar un filtro delante del paso giratorio que filtre las partículas de medio a partir de un tamaño de 60 μm.

Cuanto mayor sea la cantidad de partículas en el medio circulante, mayor será el desgaste en el paso giratorio.

- Asegurarse de que la carga de impurezas residuales cumpla las siguientes especificaciones:
 - s máximo 100 mg/L
 - Чами месапізано de aluminio: máximo 50 mg/L
- Utilizar medios de las siguientes clases:
 - ♥ Clase 5 conforme a ISO 4406:1999 código 17/15/12
 - ♦ o clase 8 conforme a NAS 1638

5.7.3 Evitar picos de presión

Los picos de tensión se generan principalmente cuando un medio incompresible (p. ej. lubricante refrigerador) choca a alta velocidad contra un orificio cerrado o casi cerrado. El choque puede tener como consecuencia un aumento de la presión, que alcanza un valor varias veces mayor que la presión permitida.

Seleccionar la duración de conexión de la válvula de modo que los picos de presión no sobrepasen la presión de funcionamiento normal permitida.

Las válvulas de cierre también pueden provocar un exceso de presión (golpes de cierre).

Los excesos de presión también pueden aparecer cuando a un medio incompresible (p. ej. lubricante refrigerador) se le aplica presión adicionalmente en un espacio cerrado mediante un movimiento de elevación.

Solución: ¡Purga de aire!

5.8 Fuga

Aviso: Daños en el husillo de alta frecuencia a causa de fugas.

El lubricante refrigerador puede penetrar en el husillo de alta frecuencia a través del rodamiento del paso giratorio y destruirlo:

- ☐ Si el paso giratorio se hace funcionar en el margen inferior de presión.
- ☐ En caso de presurización lenta del medio refrigerante.
- Instalar una supervisión de fugas para proteger de daños el husillo de alta frecuencia.

Cuando se aplica presión al paso giratorio, el par de anillos deslizantes se cierra dentro del paso giratorio.

Al desconectar la presión se abre la junta del anillo deslizante. A través del orificio de descarga se evacuan las fugas a través de un conducto separado.

La cantidad de fuga depende de lo siguiente:

- ☐ Lubricante refrigerante y su viscosidad.
- ☐ Posición de montaje del paso giratorio.
- ☐ Tendido del conducto de alimentación.
- ☐ La posición de la válvula de lubricante refrigerador y de la válvula de retención o de la válvula de 3/2 vías.

5.8.1

Figura de ejemplo: fuga

Paso giratorio, montaje vertical

Fuga	Profundidad de atornillado
1 Husillo de alta frecuencia	máximo 6 mm
2 Paso giratorio	máximo 6 mm

- Retirar los tapones de cierre que protegen las conexiones durante el transporte para proteger de daños y suciedad.
- Montar los racores para mangueras adecuados en el lugar de los tapones de cierre.
- Montar las mangueras correspondientes en los racores para mangueras.
- → Tender las mangueras de fuga con un ángulo descendente a fin de poder evacuar las fugas.
 - 4 Ángulo: mínimo 15°.
- Evacuar las fugas sin remanso.

5.8.2 Paso giratorio, montaje horizontal

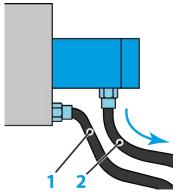


Figura de ejemplo: fuga

	Fuga	Profundidad de atornillado
1	Husillo de alta frecuencia	máximo 6 mm
2	Paso giratorio	máximo 6 mm

- → Posicionar el husillo de alta frecuencia de modo que todas las líneas de fuga se puedan conectar siempre a los orificios de descarga en la posición de 6 horas (el punto más bajo).
- ⇒ Retirar los tapones de cierre que protegen las conexiones durante el transporte para proteger de daños y suciedad.
- Montar los racores para mangueras adecuados en el lugar de los tapones de cierre.
- Montar las mangueras correspondientes en los racores para mangueras.
- → Tender las mangueras de fuga con un ángulo descendente a fin de poder evacuar las fugas.
 - ♦ Ángulo: mínimo 15°.
- Evacuar las fugas sin remanso.

6 Datos técnicos

Rodamientos

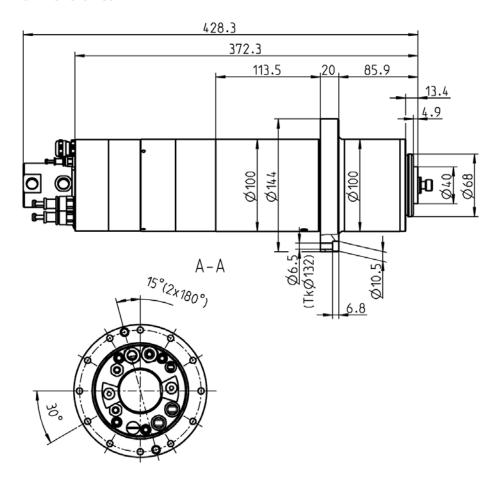
Rodamiento híbrido de bolas (unidad)	4
Engrase de por vida	Libre de mantenimiento

Valores de rendimiento Refrigeración por líquido

	Pmáx./5s	S6-60%	S1-10	00%
Potencia nominal	16,1	11,5	10	[kW]
Par de giro	6,85	5,19	4,7	[Nm]
Voltaje	380	380	380	[V]
Amperaje	38,4	28,5	25,7	[A]

Datos del motor

Tecnología de motores	Accionamiento asincrónico trifási- co (sin escobillas y sin sensor)
Frecuencia	1.200 HZ
Número de polos (par)	2
N.º de revoluciones nominal	36.000 rpm
Valor de aceleración/frenado Por segundo	10 000 rpm (otros valores bajo consulta)


Características

Protección del motor	PTC 130° C PT1000
Carcasa	Acero inoxidable
Diámetro de la carcasa	100 mm
Diámetro de la brida	144 mm
Círculo de referencia	Ø 132 mm (12 x Ø 6,5) para tornillos: M6
Refrigeración	Refrigeración por líquido
Temperatura ambiente de funcionamiento	+ 10° C + 45° C
Aire de bloqueo	
Tipo de protección	IP54
(aire de bloqueo conectado)	11.24
Limpieza del cono	
Alimentación interna de refrigerante	
Paso giratorio	< 140 bar
r aso giratorio	< 24,3 L/min
Cambio de herramienta	Cambio hidráulico del cono
Asiento de herramienta	HSK-E 40

Supervisión del cono de la herra- mienta	Inductivo
3 posiciones	Tensado, distendido, expulsado
Margen de sujeción hasta	16 mm
Marcha a derecha y a izquierda	
	5 polos (ECTA 133)
	Longitud de cable 0,5 m
Conector	(Fases del motor)
Corrector	12 polos (ECTA 133)
	Longitud de cable 0,5 m
	(Sensores)
Peso	~ 16 kg
Marcha concéntrica cono interior	< 1 μ
Juego axial	< 1 μ

6.1 Dimensiones

6.2

Los rendimientos (S1, S6 y S2) son válidos para corrientes sinusoidales y tensiones sinusoidales.

Los valores de rendimiento de los husillos de alta frecuencia dependen del CF utilizado y pueden diferir de los valores especificados.

Datos del motor

Curva característica del husillo	KL 8513
Tecnología de motores	Motor CA
Tipo de motor	ACM 82/50/80-4E
Potencia nominal	10 kW
N.º de revoluciones nominal	36.000 rpm
Refrigeración	Refrigeración por líquido
Protección del motor	PTC 130° C Pt1000
Resistencia de devanado (fase-fase)	0,45 Ω
Energía disipada	1.667 W – máx. (S1)

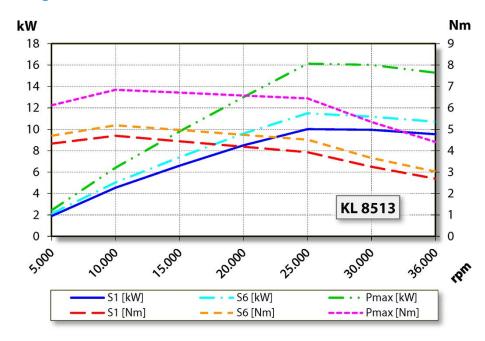
Valores medidos: S1-100 %

N.º de revoluciones nominal	5 000	10 000	15 000	20 000	25 000	30 000	36 000	rpm
N.º de revoluciones	4 185	9 242	14 271	19 299	24 328	29 191	35 062	rpm
Frecuencia	167	333	500	667	833	1 000	1 200	HZ
Potencia nominal	1,898	4,546	6,6	8,5	10,014	9,944	9,548	kW
Par de giro	4,332	4,698	4,442	4,187	3,931	3,253	2,695	Nm
Voltaje	89	170	240	310	380	380	380	V
Amperaje	24,8	25,7	24,8	23,9	23,1	22,6	21,7	Α
cos φ	0,84	0,8	0,79	0,78	0,77	0,79	0,79	

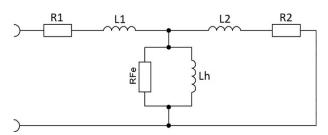
Valores medidos: S6-60%

N.º de revoluciones nominal	5 000	10 000	15 000	20 000	25 000	30 000	36 000	rpm
N.º de revoluciones	4 313	9 269	14 277	19 285	24 293	29 160	35 011	rpm
Frecuencia	167	333	500	667	833	1 000	1 200	HZ
Potencia nominal	2,122	5,037	7,4	9,600	11,494	11,172	10,712	kW
Par de giro	4,699	5,189	4,966	4,742	4,518	3,659	3,028	Nm
Voltaje	89	170	240	310	380	380	380	V
Amperaje	27,4	28,5	27,8	27,0	26,3	25,4	24,5	Α
cos φ	0,85	0,81	0,8	0,79	0,78	0,79	0,79	

Valores medidos: S2-Pmáx./5s


N.º de revoluciones nominal	5 000	10 000	15 000	20 000	25 000	30 000	36 000	rpm
N.º de revoluciones	3 796	8 945	13 933	18 921	23 909	28 625	34 290	rpm
Frecuencia	167	333	500	667	833	1 000	1 200	HZ
Potencia nominal	2,433	6,412	9,8	13	16,136	16,01	15,281	kW
Par de giro	6,12	6,846	6,712	6,579	6,445	5,341	4,41	Nm
Voltaje	89	170	240	310	380	380	380	V
Amperaje	38	38	38	38	38	38,4	38,2	А
cos φ	0,90	0,84	0,82	0,81	0,79	0,79	0,77	

Observación sobre el funcionamiento en convertidores de frecuencia estáticos.


En funcionamiento con convertidor de frecuencia la tensión efectiva de onda directa debe corresponderse con la tensión de motor especificada.

A causa de la proporción de ondas armónicas las corrientes medidas pueden ser mayores que los valores especificados.

6.2.1 Diagrama de rendimiento

6.2.2 Datos del esquema equivalente

Aviso: Daños debido a valores de rendimiento incorrectos.

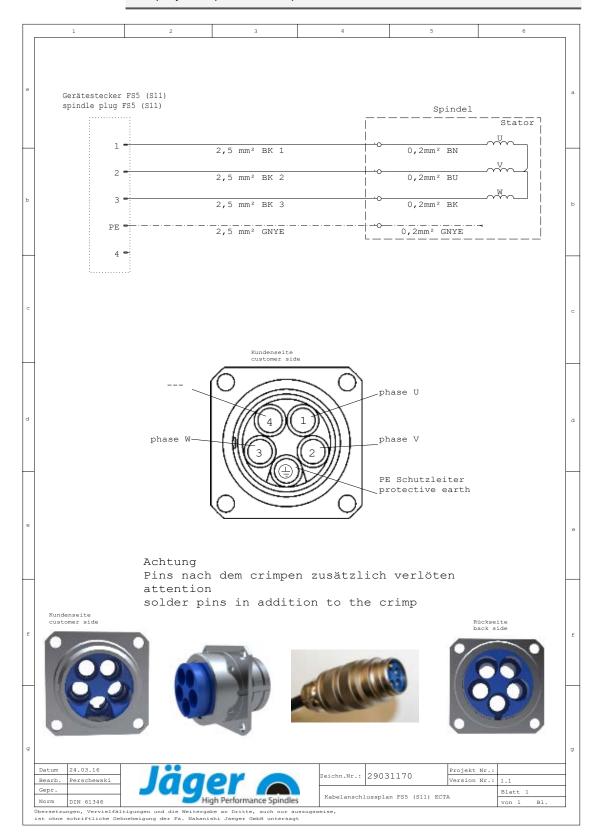
Los valores de los parámetros se refieren exclusivamente al motor.

Valores del husillo de alta frecuencia: véanse las tablas S1-100 %, S6-60 % y S2-Pmáx.

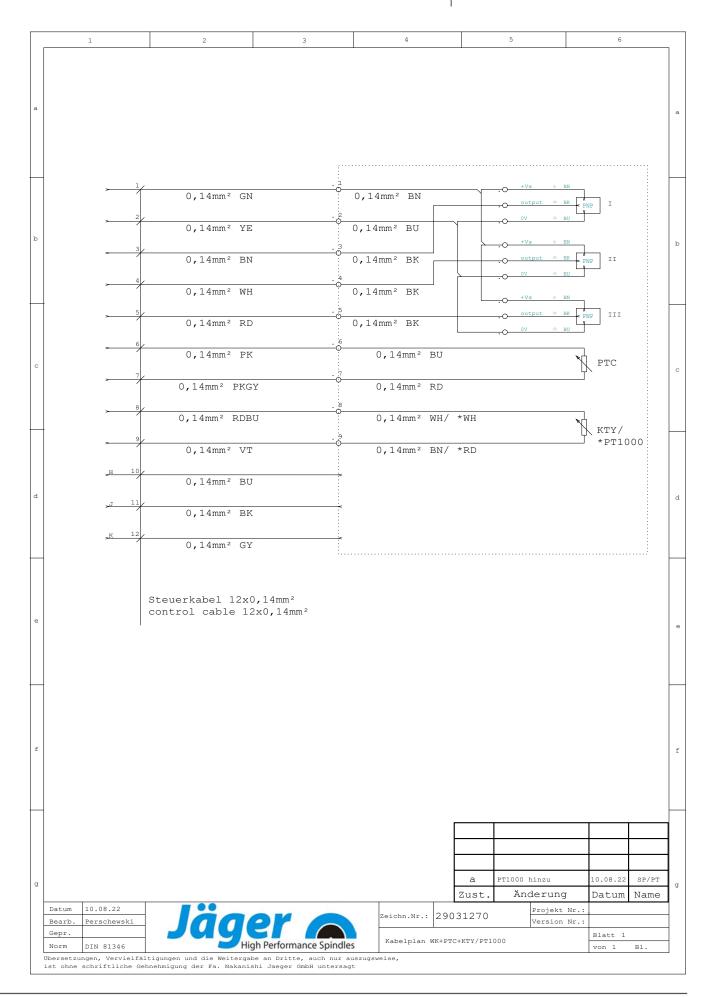
Parámetros*	Significado	Valor	Unidad
p0304	Tensión nominal (fase-fase)	380	Vrms
p0305	Corriente nominal	22,5	Arms
p0307	Potencia nominal	9,8	kW
p0308	Factor de potencia nominal	0,8	cos φ
p0310	Frecuencia nominal	833	Hz
p0311	Número de revoluciones nominal	24.113	rpm
	Energía disipada nominal	1.667	W
	N.º de revoluciones nominal	36.000	rpm
p0312	Par nominal	3,884	Nm
p0314	Número de polos (par)	2	
p0320	Corriente de magnetización nominal	8,9	Arms
p0322	Número máximo de revoluciones	42.000	rpm
p0326	Factor de corrección del momento de vuelco	100	%
p0335	Tipo de refrigeración del motor	Refrigeración	por líquido
p0341	Momento de inercia	0,001347	kgm²
p0348	Número de revoluciones de utilización, debilitación de campo V DC = 600 V	60.178	rpm
p0350	Resistencia de estátor, frío (tramo)	0,225	Ω
p0353	Inductancia de preconexión (tramo)	0	mH
p0354	Resistencia del rotor, frío	0,243	Ω
p0356	Inductancia de dispersión del estátor	0,365	mH
p0358	Inductancia de dispersión del rotor	0,352	mH
p0360	Inductancia principal	4,035	mH
p0604	Temperatura del motor, umbral de advertencia	110	°C
p0605	Temperatura del motor, umbral de fallo	130	°C
p0640	Límite de corriente	380	Arms
p1800	Frecuencia de pulsos	16	kHz
	Tensión de circuito intermedio	565	VDC
	Capacidad de preconexión	0	μF
	Tensión máxima		V
	Descenso de ralentí		%
	Reactancia de dispersión del estátor X1	1,91	Ω
	Reactancia de dispersión del rotor X2	1,841	Ω
	Reactancia del campo principal Xh	21,128	Ω

^(*) Parámetros Siemens SINAMICS 120

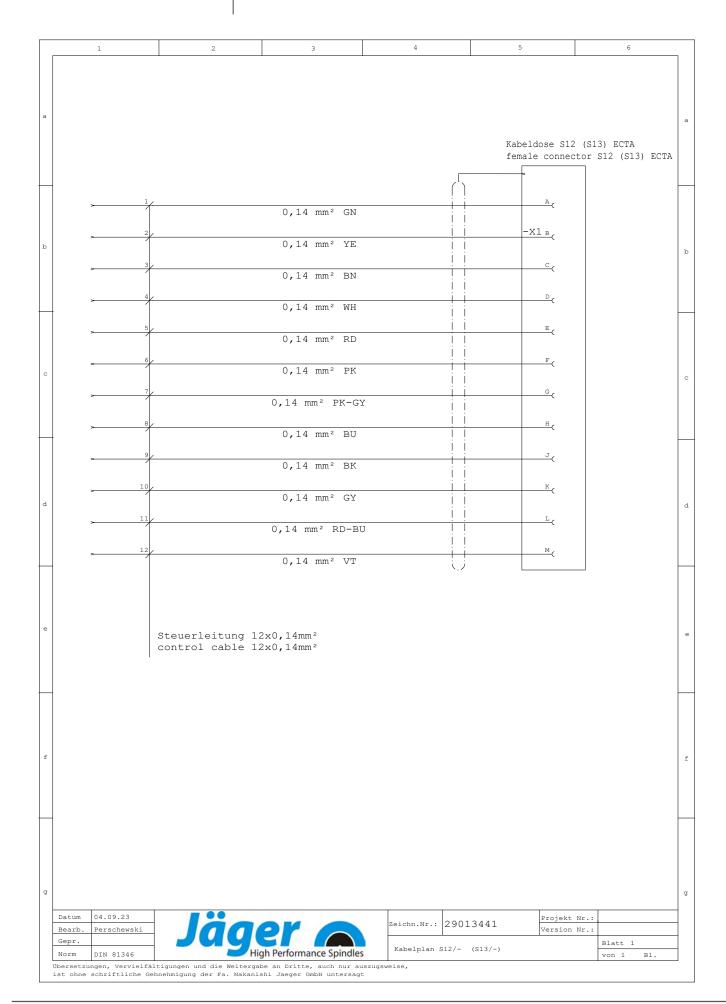
Parámetros	Significado	Valor	Unidad
	Revoluciones de desaturación **	40.082	rpm
	Inductancia principal con un número máximo de revoluciones **	4,472	mH
	Factor de saturación **	1,187	%
	Factor de reducción del par de inversión **	58,09	%


^(**) Parámetro adicional Heidenhain

6.3 Esquema de conexiones


Aviso: No modificar la asignación de fábrica.

Toda modificación puede causar sobretensiones en los componentes eléctricos (p. ej. PTC, placa de campo).



Datos técnicos

1800 1600 1600 1200 1200 150 200 Temperatura t/°C

Protección del motor Pt1000

Sensor de temperatura de platino

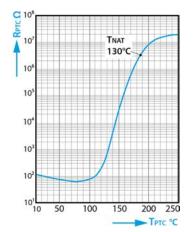
Ejecución conforme a:

- ☐ DIN EN 60751
- ☐ Clase de precisión B

Datos técnicos

Relación temperatura/resistencia (serie de valores básicos)

t ₉₀ /°C			(*)	Resisten	cia con te	emperat	ura t ₉₀ /°C	[Ω]		
	0	1	2	3	4	5	6	7	8	9
0	1000	1004	1008	1012	1016	1020	1023	1027	1031	1035
10	1039	1043	1047	1051	1055	1059	1062	1066	1070	1074
20	1078	1082	1086	1090	1094	1097	1101	1105	1109	1113
30	1117	1121	1125	1128	1132	1136	1140	1144	1148	1152
40	1155	1159	1163	1167	1171	1175	1179	1182	1186	1190
50	1194	1198	1202	1206	1209	1213	1217	1221	1225	1229
60	1232	1236	1240	1244	1248	1252	1255	1259	1263	1267
70	1271	1275	1278	1282	1286	1290	1294	1298	1301	1305
80	1309	1313	1317	1320	1324	1328	1332	1336	1340	1343
90	1347	1351	1355	1359	1362	1366	1370	1374	1378	1381
100	1385	1389	1393	1396	1400	1404	1408	1412	1415	1419
110	1423	1427	1431	1434	1438	1442	1446	1449	1453	1457
120	1461	1464	1468	1472	1476	1480	1483	1487	1491	1495
130	1498	1502	1506	1510	1513	1517	1521	1525	1528	1532
140	1536	1540	1543	1547	1551	1555	1558	1562	1566	1570
150	1573	1577	1581	1585	1588	1592	1596	1599	1603	1607
160	1611	1614	1618	1622	1625	1629	1633	1637	1640	1644
170	1648	1651	1655	1659	1663	1666	1670	1674	1677	1681
180	1685	1689	1692	1696	1700	1703	1707	1711	1714	1718


(*) Valores redondeados

6.5 Protección del motor PTC 130 °C

Posistor con aislamiento protector

Curvas características de las temperaturas nominales de reacción de 90 °C a 160 °C conforme a DIN VDE V 0898-1-401.

Resistencia de posistor R_{PTC} en función de la temperatura de posistor T_{PTC} (valores de resistencia de señal débil).

Datos técnicos

Tipo		M135	
Tensión de funcionamiento máx.	$(T_A = 0 40^{\circ} C)$	V _{máx} .	30 V
Tensión de medición máx.	$(T_A - 25 \text{ K}T_{NAT} + 15 \text{ K})$	V Mes, máx	7,5 V
Resistencia nominal	$(V_{PTC} \leq 2,5 \text{ V})$	RN	≤ 250 Ω
Tensión de ensayo de aislamiento		V_{is}	3 kV~
Tiempo de reacción		t _a	< 2,5 s
Margen de temperatura de funcio- namiento	(V=0)	T_{op}	-25/+180° C

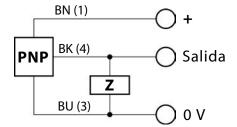
Valores de resistencia

$T_{NAT} \pm \Delta T$	R ($T_{NAT} - \Delta T$) ($V_{PTC} \le 2.5 \text{ V}$)	$R (T_{NAT} + \Delta T)$ $(V_{PTC} \le 2.5 V)$	R $(T_{NAT} + 15 \text{ K})$ $(V_{PTC} \le 7.5 \text{ V})$	R $(T_{NAT} + 23 \text{ K})$ $(V_{PTC} \le 2,5 \text{ V})$
130 ±5 ℃	≤ 550 Ω	≥ 1330 Ω	$\geq 4 \text{ k}\Omega$	

6.6 Supervisión del cono de la herramienta

La supervisión del cono de la herramienta (supervisión WK) indica al usuario el estado de disponibilidad del husillo de alta frecuencia y transmite la señal correspondiente al control de la máquina.

☐ Supervisión del cono de la herramienta mediante interruptor de proximidad inductivo.


Señales

Herramienta tensada	Herramienta destensada	Herramienta expulsada
Husillo de alta frecuencia	Husillo de alta frecuencia	Husillo de alta frecuencia
•	•	—
listo para el funcionamiento	no listo para el funcionamiento	no listo para el funcionamiento

Margen de tensión de funcionamiento: 10 - 30 VDC (UL – clase 2)

10 - 30 VDC (UL – clase 2) Distancia de conmutación: Sn 2,0 mm

Protección frente a cortocircuito e inversión de la polaridad.

BN = marrón

BK = negro

BU = azul

NO = normalmente abierto

6.7 Emisiones de ruido aéreo

ATENCIÓN: El ruido afecta a la salud.

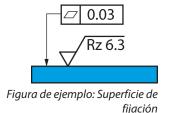
► Hacer funcionar el husillo de alta frecuencia solo con protección auditiva.

Lugar de funcionamiento

PELIGRO: A causa de piezas proyectadas.

Si el husillo de alta frecuencia se fija incorrectamente, durante el funcionamiento puede soltarse y ser proyectado a causa de las fuerzas generadas.

Sujetar el husillo de alta frecuencia de forma fija.

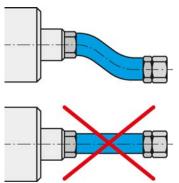

ADVERTENCIA: Peligro de lesiones a causa de piezas proyectadas.

El husillo de alta frecuencia funciona a elevados números de revoluciones que provocan la proyección de virutas con elevada energía cinética.

- ► En ningún caso deben retirarse los dispositivos de seguridad de la máquina o instalación.
- ► Trabajar siempre con gafas de protección.

Antes de la instalación del husillo de alta frecuencia deben tenerse en cuenta los puntos siguientes:

- → Debe asegurarse que el patrón de taladros del husillo de alta frecuencia encaja con el de la superficie de fijación de la máquina.
 - Comprobar el número y la medida de los tornillos de fijación (accesorios opcionales).
- Comprobar que las mangueras de conexión no presenten daños.
- Comprobar que los cables de conexión no presenten daños.
- Utilizar únicamente mangueras y cables en perfecto estado.
- No poner en marcha el husillo de alta frecuencia cerca de una fuente de calor.


8 Instalación

Antes de la instalación:

 Comprobar que el husillo de alta frecuencia está completo y no presenta años.

Si el husillo de alta frecuencia ha estado almacenado durante un período prolongado:

➡ Ejecutar todos los pasos descritos en el capítulo Puesta en funcionamiento tras almacenamiento.

8.1

Conectar los medios y cables de modo flexible.

Instalar el husillo de alta frecuencia

Ejecutar los pasos siguientes en orden para instalar el husillo de alta frecuencia:

- Retirar los tapones de cierre que protegen las conexiones durante el transporte para proteger de daños y suciedad.
- Montar los racores para mangueras adecuados en el lugar de los tapones de cierre.
- Montar las mangueras correspondientes en los racores para mangueras.
- Debe asegurarse que las conexiones sean flexibles y sin cargas.
- ➡ Estanqueizar todas las conexiones para aire comprimido axialmente respecto al sentido de atornillado.
- Estanqueizar todas las conexiones del sistema hidráulico.
- Estanqueizar todas las conexiones para agua refrigerante axialmente respecto al sentido de atornillado.
- ⇒ Si el husillo de alta frecuencia está dotado de aire de sellado:
 - Asegurarse de que no se pueda generar ninguna corriente de aire en la zona de rodamientos.
 - Utilizar siempre cajas de cables estancas al conectar cables eléctricos.
- Fijar el husillo de alta frecuencia en la máquina.
- Conectar las mangueras a la toma del medio correspondiente.
- Retirar la caperuza protectora que protege el eje durante el transporte para evitar los daños y la suciedad.
- Conectar los conectores de los cables de conexión de funcionamiento a la conexión correspondiente del husillo de alta frecuencia y al convertidor de frecuencia.
- Bloquear los conectores.

Diámetro del tubo de alimentación del medio

 Consultar el diámetro nominal de los tubos de alimentación de medios en la tabla siguiente:

DN	Medio	D1		D2	
2,8	Aire comprimido	2,8 mm	⁷ / ₆₄ "	4 mm	⁵ / ₃₂ "
4	Aire comprimido	4 mm	⁵ / ₃₂ "	6 mm	¹⁵ / ₆₄ "
6	Aire comprimido	6 mm	¹⁵ / ₆₄ "	8 mm	⁵ / ₁₆ "
5,5	Agua refrigerante	5,5 mm	⁷ / ₃₂ "	8 mm	⁵ / ₁₆ "
7	Agua refrigerante	7 mm	9/32"	10 mm	²⁵ / ₆₄ "
6	Sistema hidráulico	6,4 mm	1/4"	13,4 mm	¹⁷ / ₃₂ "
8	Sistema hidráulico	8 mm	⁵ / ₁₆ "	15 mm	¹⁹ / ₃₂ "
10	Sistema hidráulico	9,5 mm	³ / ₈ "	17,4 mm	¹¹ / ₁₆ "
6	Lubricante refrigerador	6,4 mm	1/4"	13,4 mm	¹⁷ / ₃₂ "
8	Lubricante refrigerador	8 mm	⁵ / ₁₆ "	15 mm	¹⁹ / ₃₂ "

8.3 Agua refrigerante

8.3.1 Calidad del agua refrigerante

El agua destilada provoca inmediatamente corrosión en las piezas bruñidas, que a menudo pasa desapercibida pero posteriormente causa daños graves.

No utilizar agua pura o destilada.

Los depósitos acumulados en los canales de refrigeración a causa de un agua de refrigeración inadecuada evitan la disipación de calor.

Utilizar agua refrigerante con las siguientes características:

Agua potable	Conforme a 98/83/CE
Grado de dureza	1 – 15°dH
Valor pH	7-9
Aditivo (protección anticorrosiva)	20 % Antrifrogen N

8.3.2 Ajustar la refrigeración

Observar los siguientes valores para la refrigeración de líquidos:

Diámetro de manguera (*)	Como mínimo DN 5,5
Temperatura de entrada	Como mínimo 20 °C
Caudal	Como mínimo 1,5 L/min
Temperatura de salida	Como máximo 40 °C

^(*) Utilizar mangueras de refrigeración impenetrables por los rayos ultravioleta.

8.4 Cambio de herramienta hidráulico

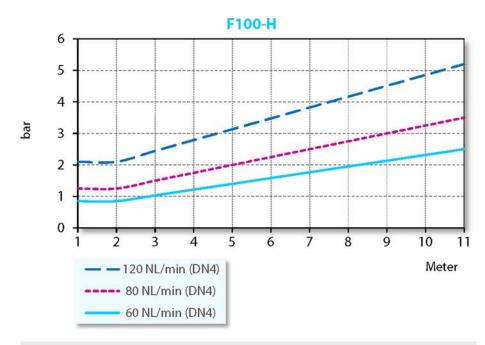
Utilizar aceite hidráulico con las siguientes características:

DIN 51 524	
ISO 6743	HLP 46

8.5 Aire comprimido

8.5.1 Clases de pureza de aire (ISO 8573 -1)

Impurezas sólidas	Clase 3 Grado de filtración mejor 5 μm para sólidos
Contenido en agua	Clase 4 Punto máx. de condensación bajo presión +3 °C
Contenido total de aceite	Clase 3 Máx. contenido de aceite 1 mg/m³


8.5.2

Para la especificación de la calidad del aire véase el capítulo «Clases de pureza de aire (ISO 8573 -1) [> 32]».

Ajustar el aire de sellado

El valor de ajuste para el aire de sellado depende del diámetro y la longitud de la manguera.

- Diámetro de manguera: DN 4
- ⇒ Consultar el valor de ajuste en el siguiente diagrama.
- Conectar también el aire de sellado y la refrigeración en el control al encender la máquina. De este modo el husillo de alta frecuencia también estará protegido en estado de parada.

Demanda mínima de aire de sellado	Mecanizado en seco
Demanda media de aire de sellado	Mecanizado con agua proyectada
Demanda máxima de aire de sellado	Mecanizado con chorro de agua

8.5.3 Valor de ajuste

Para la especificación de la calidad del aire véase el capítulo «Clases de pureza de aire (ISO 8573 -1) [> 32]».

Respetar los valores siguientes:

Limpieza del cono	4,5 - 6 bar
Sistema hidráulico para cambio de herramienta	80 - 120 bar
Alimentación interna de refrigerante	máximo 140 bar máximo 24,3 L/min
Lubricante refrigerador MMS (neblina de aceite)	máximo 10 bar

Puesta en funcionamiento

PELIGRO: A causa de piezas proyectadas.

Un número de revoluciones incorrecto puede destruir el husillo de alta frecuencia o la herramienta y proyectar sus fragmentos.

- Respetar el número máximo de revoluciones para la herramienta seleccionada.
- Respetar el número máximo de revoluciones del husillo de alta frecuencia.
- ► El número de revoluciones máximo admisible del husillo de alta frecuencia para la puesta en marcha/rectificado siempre es el número de revoluciones más bajo indicado.

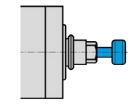


Figura de ejemplo: colocar el vástago

Aviso: Garantizar el funcionamiento.

No hacer funcionar nunca el husillo de alta frecuencia sin un vástago de herramienta fijado.

Si el vástago de herramienta no está fijado:

- ☐ El sistema de fijación se daña a causa de la fuerza centrífuga.
- ☐ El sistema de fijación se desajusta.
- ☐ Se influye en la calidad de equilibrado del husillo de alta frecuencia.
- ☐ Se daña el rodamiento.
- Girar a mano el eje del husillo como mínimo 10 veces.
- Antes de almacenarlo y antes de la puesta en funcionamiento limpiar solamente el canal de refrigeración con aire comprimido.

9.1

100% 80% 60% 40% 20% 10 2 2 Duración de la carga (minutos)

Esquema de rodaje

- ⇒ Poner en funcionamiento el husillo de alta frecuencia con la herramienta fijada (sin mecanizado) durante unos 10 minutos.
- ⇒ El número de revoluciones es, como mucho, el 20 % del número de revoluciones máximo admisible del husillo de alta frecuencia.
 - Véase la definición: número de revoluciones máximo admisible
- ⇒ Dejar en marcha el husillo de alta frecuencia durante aprox. 2 minutos, como mucho, al 50 % del número de revoluciones máximo admisible.
- ⇒ Hacer funcionar el husillo de alta frecuencia otros 2 minutos más, como mucho, al 80 % del número de revoluciones máximo admisible.

Ahora el husillo de alta frecuencia está listo para el funcionamiento.

Carga máx. (%)

9.2 Arranque diario

Proceder de la siguiente manera para precalentar y preservar la grasa lubricante de los rodamientos:

- ⇒ Hacer funcionar el husillo de alta frecuencia con la herramienta tensada (sin mecanizado).
 - Aprox. durante 2 minutos.
 - Con, como máximo, el 50 % del número de revoluciones máximo admisible.

(Véase el capítulo Puesta en funcionamiento [▶ 34])

El husillo de alta frecuencia alcanza así su temperatura de funcionamiento.

9.3 Mensaje de parada

Utilizar en el convertidor de frecuencia la opción de detectar el mensaje de parada del eje y enviarlo al control de la máquina para su evaluación.

9.4 Puesta en funcionamiento tras almacenamiento

- ⇒ Poner el husillo de alta frecuencia en funcionamiento solo cuando su temperatura se haya adaptado (de la temperatura del lugar de almacenamiento a la del lugar de utilización).
 - La diferencia de temperatura entre el husillo de alta frecuencia y el lugar de utilización no debe superar los 10 °C.
- ⇒ Ejecutar todos los pasos descritos en el capítulo «Mantenimiento [> 41]».
- ⇒ Hacer funcionar el husillo de alta frecuencia aprox. 5 minutos, como máximo, al 50 % del número de revoluciones admisible.
 - ♦ Véase el capítulo Puesta en funcionamiento [> 34]
- → Hacer funcionar el husillo de alta frecuencia otros 2 minutos más, como máximo, al 80 % del número de revoluciones admisible.

De este modo se precalienta y preserva la grasa lubricante.

10

Cambio de herramienta

ATENCIÓN: Peligro de atrapamiento a causa del eje en rotación.

Si el eje aún gira, los dedos pueden quedar atrapados y aplastados.

Cambiar la herramienta solo cuando el eje esté parado.

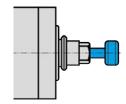


Figura de ejemplo: colocar el vástago

Aviso: Garantizar el funcionamiento.

No hacer funcionar nunca el husillo de alta frecuencia sin un vástago de herramienta fijado.

Si el vástago de herramienta no está fijado:

- ☐ El sistema de fijación se daña a causa de la fuerza centrífuga.
- ☐ El sistema de fijación se desajusta.
- ☐ Se influye en la calidad de equilibrado del husillo de alta frecuencia.
- ☐ Se daña el rodamiento.

10.1

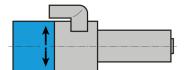


Figura de ejemplo: caracterización de sentido de giro

Marcha a derecha y a izquierda

El sistema de sujeción del husillo de alta frecuencia está diseñado para la rotación a derecha e izquierda.

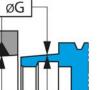
- Utilizar únicamente herramientas con el sentido de giro adecuado para el husillo de alta frecuencia.
- Utilizar únicamente asientos de herramienta con el sentido de giro adecuado para el husillo de alta frecuencia.
- ➡ En el convertidor de frecuencia, ajustar el sentido de giro del husillo de alta frecuencia según el sentido de giro de la herramienta/del asiento de herramienta utilizados.

10.2 Cambio hidráulico del cono

PELIGRO: A causa de piezas proyectadas.

La limpieza del cono podría acumular presión de aire en el cono de fuste hueco (HSK) durante el cambio del cono para herramienta. Si se libera repentinamente dicha presión, proyectará el cono de fuste hueco.

- Utilizar únicamente conos para herramienta con taladro pasante central.
- ▶ Desconectar obligatoriamente la limpieza del cono cuando el HSK se encuentre aprox. 1 2 mm delante de la superficie plana de contacto.


Consejo: Garantizar la calidad de marcha concéntrica.

- ► Mantener la pinza portapieza, la tuerca de apriete, la superficie plana de contacto, el eje, el cono para herramienta y el asiento de herramienta siempre limpios.
- Comprobar el asiento del cono para herramienta.

Al cambiar al husillo de alta frecuencia debe estar limpio y en perfecto estado.

- Asegurarse de que el eje del husillo de alta frecuencia está detenido por completo.
- Conectar el sistema hidráulico para «cilindro hacia delante».
- Retirar la herramienta.
- ⇒ Limpiar el cono interior del asiento de herramienta y el cono interior del eje con el cono de limpieza de fieltro.
- Colocar la herramienta.
 - Insertar la herramienta hasta la superficie de contacto del cono de sujeción.
- Conectar el sistema hidráulico para «cilindro hacia atrás».
- Una vez realizado el cambio de herramienta hacer una pausa de 1-2 segundos.
- Poner en marcha el husillo de alta frecuencia.

10.2.1 Tensor automático de herramienta HSK

Tolerancia de coaxialidad

Recomendamos los siguientes valores:

- ⇒ Tolerancia de coaxialidad al cambiar la herramienta.
 - ♦ Coaxialidad (ØG): 0,7 mm
- Fuerza de contacto en el cono de sujeción.
 - Máximo: 140 N

10.3 Diagrama de flujo

10.3.1 Diagrama de flujo hidráulico

Mensaje de parada del husillo de alta frecuencia procedente del control de la máquina. (N.º de revoluciones = 0 en husillo de alta frecuencia con magnetorresistor) (frecuencia = 0 y retardo de como mín. 2-3 s en husillo de alta frecuencia sin magnetorresistor) Conexión Fluido Aire comprimido Núm. ON OFF ON OFF Atención Dejar el aire de sellado siempre conectado. No cambiar herramienta Incluso durante el cambio de herramienta. Así se 3 cuando el eje gira. evita que entre suciedad o humedad en el husillo de alta frecuencia. Cambio de herramienta en el husillo de alta frecuencia. Alimentación interna de refrigerante OFF. 11 Limpieza del cono. 4 **Atención** Sistema hidráulico para cambio de No girar sin herramienta herramienta ON. tensada. 7 Cilindro hacia delante Señal herramienta tensada Ejecutar cambio de herramienta. Limpieza del cono OFF. 4 Desconectar cuando la superficie plana de contacto del cono para herramienta esté a 2 mm de la superficie plana de contacto del eje. Sistema hidráulico para cambio de herramienta ON. 8 Cilindro hacia atrás Alimentación interna de refrigerante ON. 11 El husillo de alta frecuencia está listo para el funcionamiento.

10.3.2 Diagrama de flujo eléctrico

Cono para herra- mienta	Sistema hidráulico ON	Tensado	Distendido	Expulsado
No	Sí	Sin señal	Señal	Sin señal
colocado		= 0	= 1	= 0
Colocado	Sí	Señal = 1	Sin señal = 0	Sin señal = 0
No	Sí	Sin señal	Sin señal	Señal
tensado		= 0	= 0	= 1

10.3.3 Señales

	Entradas	Descripción	Señal	Acción
d	Señal estensado	Cilindro hacia atrás. Sistema de fijación distendido. Ningún cono para herramienta colocado en el asiento de herramienta del husillo de alta frecuencia.	= 0	No poner en marcha el husillo de alta fre- cuencia
	Señal tensado	Cilindro hacia atrás. Sistema de fijación tensado con herramienta. Cono para herramienta colocado en el asiento de herramienta del husillo de alta frecuencia.	= 1	Poner en marcha el husillo de alta fre- cuencia si la señal es = 1
e	Señal expulsado	El cilindro está extendido. Sistema de fijación suelto. Cono para herramienta colocado en el asiento de herramienta del husillo de alta frecuencia. El cono para herramienta no está tensado.	= 0	No poner en marcha el husillo de alta fre- cuencia

Aviso: garantizar el funcionamiento.

La señal «destensado» muestra al operario el estado de disponibilidad del husillo de alta frecuencia para garantizar la seguridad durante el funcionamiento.

El estado de fijación «destensado»:

- no es un estado de funcionamiento autorizado
- □ solo está autorizado para el transporte y el almacenamiento

Cualquier carrera en vacío reduce la vida útil del husillo de alta frecuencia.

11 Herramientas para el mecanizado de alta velocidad

PELIGRO: A causa de piezas proyectadas.

En caso de sentido de giro incorrecto la herramienta se dañará al aplicar la carga. La fuerza centrífuga proyectará los fragmentos rotos.

▶ Utilizar únicamente herramientas con el sentido de giro adecuado para el husillo de alta frecuencia.

PELIGRO: A causa de piezas proyectadas.

Un número de revoluciones incorrecto puede destruir el husillo de alta frecuencia o la herramienta y proyectar sus fragmentos.

- Respetar el número máximo de revoluciones para la herramienta seleccionada.
- Respetar el número máximo de revoluciones del husillo de alta frecuencia.
- ► El número de revoluciones máximo admisible del husillo de alta frecuencia para la puesta en marcha/rectificado siempre es el número de revoluciones más bajo indicado.

Aviso: Herramienta inadecuada.

Las herramientas sin orificio interior no son adecuadas para la alimentación interna de refrigerante.

▶ Desconectar obligatoriamente la alimentación interna de refrigerante cuando se utilicen herramientas sin orificio interior por motivos de producción.

En caso de inobservancia el husillo de alta frecuencia se puede dañar o destruir.

- Utilizar solo herramientas técnicamente perfectas.
- ⇒ Utilizar únicamente herramientas en las que el diámetro del vástago de herramienta se corresponda con el diámetro interior de la pinza portapieza. Por ejemplo, no utilizar vástagos con un diámetro de 3 mm en pinzas portapiezas para 1/8" (=3,175 mm).
 - Véase también el capítulo Datos técnicos [> 18]
- Utilizar únicamente vástagos de herramienta con una tolerancia de diámetro de h6.
- No utilizar vástagos de herramienta con superficie de sujeción (p. ej. Weldon).
- Utilizar únicamente herramientas equilibradas.
 - UNISO 1940, nivel de calidad 2,5.

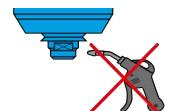
12 Mantenimiento

El mantenimiento del husillo debe ser realizado únicamente por personal especializado.

Antes de cada trabajo de mantenimiento es necesario detener el husillo de alta frecuencia.

- Asegurarse de que el eje del husillo de alta frecuencia está detenido por completo.
- ⇒ Antes de ejecutar un trabajo, leer detenidamente el capítulo correspondiente a dicho trabajo en el manual de instrucciones.
- Observar el manual de instrucciones de la máquina en la que se ha montado el husillo de alta frecuencia.
- Observar todas las indicaciones y normas de seguridad.

12.1 Rodamientos de bolas


Aviso: Los cuerpos extraños reducen la vida útil.

Los rodamientos del husillo de alta frecuencia están dotados de una lubricación con grasa de por vida. Por lo tanto no requieren mantenimiento.

- No lubricar los rodamientos de bolas.
- No introducir grasas, aceites ni productos de limpieza en orificios del husillo de alta frecuencia.

12.2 Limpieza diaria

Para garantizar un funcionamiento seguro y preciso del husillo de alta frecuencia, todas las superficies de contacto del husillo, del asiento del husillo, del asiento de herramienta y del soporte de herramienta deben estar limpias.

Aviso: Los cuerpos extraños reducen la vida útil.

- No utilizar aire comprimido para limpiar el husillo de alta frecuencia.
- No utilizar aire comprimido para limpiar el husillo de alta frecuencia.
- No utilizar aire comprimido para limpiar el husillo de alta frecuencia.

Las impurezas podrían penetrar en la zona de rodamientos.

12.2.1 Antes de empezar a trabajar

- Comprobar que todas las superficies estén bien limpias y libres de polvo, grasa, refrigerante, restos de mecanizado y partículas de metal.
- Comprobar que el husillo de alta frecuencia no presente daños.
- Si el husillo de alta frecuencia está dotada de aire de sellado, conectarlo siempre durante la limpieza.
- Utilizar un paño limpio y suave o un pincel limpio y suave para la limpieza.

Si el husillo de alta frecuencia está dotado de limpieza del cono:

⇒ Después de limpiar, conectar la limpieza del cono durante 2-3 segundos.

Si quedaba alguna impureza adherida, el aire de la limpieza del cono la soplará fuera del eje.

12.2.2 En cada cambio de herramienta

- Asegúrese de que el asiento de herramienta y el vástago de la herramienta estén limpios.
 - 🔖 Elimine la suciedad que pueda haberse adherido a ellos.

12.2.3 En cada cambio del dispositivo de sujeción

- Limpiar el cono interior del eje del husillo de alta frecuencia. El cono interior debe estar libre de virutas e impurezas.
- Limpiar el cono para herramienta.
- Después de la limpieza aplicar una ligera capa de grasa en el cono de la pinza portapieza.
 - Utilizar únicamente la grasa para pinzas del kit de mantenimiento.

Esto hará que mejore la capacidad de deslizamiento y aumente la fuerza de sujeción de la pinza portapieza.

12.3 Almacenamiento

Si el husillo de alta frecuencia no se necesita durante un período prolongado:

- Antes de almacenarlo y antes de la puesta en funcionamiento limpiar solamente el canal de refrigeración con aire comprimido.
- Retirar todos los residuos de refrigerante.
- Cerrar las conexiones del sistema hidráulico.
- Almacenar el husillo de alta frecuencia en posición horizontal.
- Almacenar el husillo de alta frecuencia protegido de la humedad, el polvo y otros agentes medioambientales.
- ⇒ Respetar las siguientes condiciones de almacenamiento.

Temperatura del lugar de almacenamiento	+10 °C + 45° C
Humedad relativa del aire	< 50 %

12.4 Mantenimiento mensual

 Girar a mano el eje del husillo de alta frecuencia cada cuatro semanas como mínimo 10 veces.

12.5 Almacenamiento prolongado

- Girar a mano el eje del husillo de alta frecuencia cada tres meses como mínimo 10 veces.
- ⇒ A continuación, poner en funcionamiento el husillo de alta frecuencia con la herramienta fijada durante unos 10 minutos.
 - ☼ El número de revoluciones es, como mucho, el 20 % del número de revoluciones máximo admisible del husillo de alta frecuencia. (Véase el capítulo Puesta en funcionamiento [▶ 34])

12.6 Tiempo máximo de almacenamiento

El tiempo máximo de almacenamiento es de 2 años.

Observar obligatoriamente todos los puntos del capítulo «Almacenamiento prolongado [▶ 42]». Solo así se puede preservar la capacidad de funcionamiento del husillo de alta frecuencia.

13 Desmontaje

Proceder de la siguiente manera para desmontar el husillo de alta frecuencia:

- Desconectar la alimentación de energía (corriente) por completo.
- Desconectar la alimentación de medios (aire y líquido) por completo.
- Desconectar el sistema hidráulico por completo.
- Asegurarse de que el eje del husillo de alta frecuencia está detenido por completo.
- Retirar todas las conexiones del husillo de alta frecuencia.
- ⇒ Vaciar el canal de refrigeración del husillo de alta frecuencia.
- Desmontar el husillo de alta frecuencia de la máquina.

13.1

Eliminación de desechos y protección del medio ambiente

Más del 90 % de los materiales utilizados en el husillo de alta frecuencia son reciclables (aluminio, acero inoxidable, acero, cobre, etc.)

El husillo de alta frecuencia no debe desecharse con la basura doméstica.

- Retirar todos los materiales no reciclables.
- Desguazar el husillo de alta frecuencia en una instalación de tratamiento autorizada.
- Observar todas las normas de las autoridades administrativas competentes.
- No conducir líquidos refrigerantes a las aguas residuales.
- No conducir aceites a las aguas residuales.
- Desechar el aceite hidráulico conforme a las normativas locales.
- Desechar los refrigerantes conforme a las normativas locales.

Si no es posible desmontar el husillo de alta frecuencia, enviarlo a **Nakanishi Jaeger GmbH**. La empresa **Nakanishi Jaeger GmbH** no asumirá los costes derivados del envío ni las tasas de las instalaciones de tratamiento.

14 Servicio posventa y reparaciones

PELIGRO: Descargas eléctricas.

Las descargas eléctricas pueden causar quemaduras graves y lesiones mortales

Excluir riesgos causados por la energía eléctrica (véanse los detalles, p. ej., en las normas de la VDE (asociación de electrotécnicos alemanes) y de las empresas locales de suministro de energía).

Antes de empezar a trabajar desconectar la alimentación de corriente del husillo de alta frecuencia.

Aviso: Daños a causa de descargas electrostáticas.

No tocar los componentes del husillo de alta frecuencia sensibles a descargas electrostáticas.

14.1 Red de servicio posventa

Solo los socios de servicio posventa certificados pueden abrir y reparar el husillo. En caso de inobservancia se anulará el derecho a indemnización y garantía.

 Consultar la lista de los socios de servicio posventa en la siguiente página web.

Servicio posventa y reparaciones

https://www.nakanishi-jaeger.com/es/contact/service-partners

14.2 Fallos de funcionamiento

En base a la siguiente enumeración se pueden determinar y eliminar fallos rápidamente.

El husillo de alta frecuencia no gira

Causa	Eliminación de fallos
	☐ Comprobar el convertidor de frecuencia (CF).
No hay	☐ Comprobar la máquina.
alimentación de co-	☐ Comprobar todas las conexiones eléctricas.
rriente	☐ Comprobar todos los conductores del cable de motor.
	☐ Accionar el botón Arranque/Reinicio.
	☐ Esperar a que el husillo de alta frecuencia se haya enfriado.
La protección térmica se ha conectado	☐ Comprobar si hay mensajes de error del CF. Si no hay mensaje encendido, poner en marcha el CF.
	(Véase también «SelEl husillo se calienta [> 45] »)
EI CF se ha desconectado	☐ Consultar los mensajes de error en el manual de instrucciones del CF.
Cambio de herramienta activado	 Desconectar el sistema hidráulico para el cambio de herramienta.

El husillo de alta frecuencia está demasiado caliente

Causa	Eliminación de fallos
	☐ Comprobar la potencia del refrigerador.
	☐ Comprobar el nivel de agua del refrigerador.
Refrigeración insufi- ciente	☐ Comprobar las tomas y los tubos refrigerantes.
ciciic	☐ Comprobar el circuito refrigerante.
	☐ Comprobar si hay mensajes de error del refrigerador.
Falta fase	☐ Comprobar si hay rotura de cable en los conductores del cable de motor.
	☐ Comprobar el sentido de giro del husillo de alta frecuencia.
Mecanizado demasiado	☐ Comprobar el sentido de giro de la herramienta.
intenso	☐ Comprobar si la herramienta presenta daños.
	☐ Reducir la intensidad de carga del mecanizado.
CF ajustado incorrecta- mente	☐ Comparar los valores del husillo de alta frecuencia con los valores del CF.

Servicio posventa y reparaciones

El husillo de alta frecuencia hace ruido

Causa	Eliminación de fallos		
	Utilizar únicamente herramientas equilibradas.		
Herramienta inadecua-	(Véase también el capítulo «Herramientas para el mecanizado de alta velocidad [> 40] »).		
da	☐ Comprobar si la herramienta presenta daños.		
	☐ Reemplazar la herramienta dañada.		
Husillo de alta frecuencia sin sujeción circular o deformado	Utilizar únicamente soportes de husillo del surtido de accesorios originales o soportes de husillo fabricados según las especificaciones de tolerancia de la empresa Nakanishi Jaeger GmbH.		
Rodamiento dañado	 Contactar con el servicio posventa de la empresa Naka- nishi Jaeger GmbH. 		

No hay cambio automático de herramienta

Causa	Eliminación de fallos
Impurazas	 Retirar todas las impurezas que haya entre el cono para he- rramienta y el eje del husillo de alta frecuencia.
Impurezas	(Observar todos los puntos de los capítulos «Cambio de herramienta [▶ 36]» y «Mantenimiento [▶ 41]».)
Falta presión	 Comprobar las conexiones del sistema hidráulico. Comprobar las conexiones del sistema hidráulico. Comprobar el circuito hidráulico. Comprobar los ajustes del sistema hidráulico para el cambio de herramienta.
Falta purga de aire	Comprobar si las dos conexiones del cilindro de doble efecto están conectadas.Comprobar si el cilindro aspira aire.

El sensor no suministra señales

Causa	Eliminación de fallos
No hay conexión con el sensor	☐ Comprobar los cables y las conexiones.
Posición incorrecta de la herramienta	☐ Comprobar si la herramienta está tensada correctamente.
Posición incorrecta de inserción de herramienta	 Contactar con el servicio posventa de la empresa Naka- nishi Jaeger GmbH.

Servicio posventa y reparaciones

El husillo de alta frecuencia vibra/oscila

Causa	Eliminación de fallos
	Utilizar únicamente herramientas equilibradas.
Herramienta inade-	(Véase también el capítulo «Herramientas para el mecanizado de alta velocidad [> 40] »).
cuada	☐ Comprobar si la herramienta es adecuada para la aplicación.
	☐ Comprobar si la herramienta presenta daños.
	☐ Reemplazar la herramienta dañada.
l	☐ Retirar todas las impurezas que haya entre el cono para herramienta y el eje del husillo de alta frecuencia.
Impurezas	(Observar todos los puntos de los capítulos «Cambio de herramienta [№ 36]» y «Mantenimiento [№ 41]».)
CF ajustado incorrectamente	 Comparar los valores del husillo de alta frecuencia con los valores del CF.
Mecanizado demasia- do intenso	☐ Reducir la intensidad de carga del mecanizado.
Tornillos de fijación aflojados	☐ Apretar los tornillos.
Husillo de alta fre- cuencia dañado	 Contactar con el servicio posventa de la empresa Nakanishi Jaeger GmbH.

Si tras comprobar todos los puntos no se elimina el fallo, contactar con el socio de servicio posventa correspondiente.

- Pedir el comprobante de reparación al socio de servicio posventa.
- ⇒ Comprobar el manual de instrucciones de la máquina.
- Contactar con el fabricante de la máquina.

15

Deben observarse las indicaciones de seguridad de la documentación del producto suministrada.

Declaración de incorporación

De acuerdo con la Directiva de Máquinas CE

Nakanishi Jaeger GmbH

Construcción de maquinaria eléctrica de alta frecuencia

Siemensstr. 8

D-61239 Ober-Mörlen

Tel. +49 (0) 60029123 -0

declara por la presente que el siguiente producto,

Producto	Husillo de alta frecuencia
Tipo	F100-H636.101 K0,5RW2
N.º de serie	Véase la última página del manual de instrucciones

en la medida en la que sea posible en función del volumen de suministro cumple los requisitos básicos establecidos por la Directiva de máquinas 2006/42/CE.

Párrafos de la Directiva de máquinas que se han aplicado: 1.1.1; 1.1.2; 1.1.5; 1.3.2; 1.3.4; 1.5.1; 1.5.2; 1.5.4; 1.5.5; 1.5.6; 1.5.8; 1.5.9; 1.6.4; 1.6.5; 1.7.1; 1.7.1.1; 1.7.2; 1.7.3; 1.7.4;

La cuasi máquina cumple además en su versión de serie todas las disposiciones de las siguientes directivas:

Normas armonizadas aplicadas	DIN EN ISO 12100		
	Seguridad de las máquinas		

La puesta en servicio de la cuasi máquina estará prohibida hasta que se haya demostrado que la máquina en la que se debe montar la cuasi máquina cumple las disposiciones de la Directiva de máquinas 2006/42/CE y, dado el caso, otras normativas aplicables.

Nosotros, Nakanishi Jaeger GmbH, nos comprometemos a remitir la documentación especial de la cuasi máquina a las autoridades nacionales si así lo solicitan.

La documentación técnica especial para esta cuasi máquina ha sido elaborada de conformidad con el Anexo VII, Parte B.

Representante autorizado para la recopilación de la documentación conforme al Anexo VII, Parte B:

Nakanishi Jaeger GmbH

Ober-Mörlen, 01.09.2023

Canal de YouTube de Nakanishi Jaeger

Escanear este código QR con cualquier otro escáner de códigos QR.

Nakanishi Jaeger GmbH

Siemensstraße 8 61239 Ober-Mörlen **GERMANY**

***** +49 (0)6002-9123-0

oxtimes sales@nakanishi-jaeger.com

www.nakanishi-jaeger.com

N.º de serie

Tipo F100-H636.101 K0,5RW2

N.ºde artículo 10406064-02

Revisión 00 Fecha 01.09.2023

Sprache ES

